PNAS paper published by NIFTI affiliates Thomas Mohren, Bing Brunton, Steve Brunton, and Tom Daniel



UWIN graduate fellow Thomas Mohren and UWIN faculty Bing Brunton, Steve Brunton, and Tom Daniel published a paper in PNAS (Proceedings of the National Academy of Sciences of the United States of America) on how flying insects can detect changes in their flight patterns using only a few complex sensors. In order to navigate quickly in complex situations, insects require rapid feedback from the multitude of sensors found on their wings, antennae, and other body parts. The paper, titled “Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data,” describes how insects use both the location of the sensors and the temporal history of the wing motions to sense body rotations.

The researchers use computer models to investigate how insect sensors help detect disturbances. They found a few vital pieces in the insects intake and processing mechanisms. The temporal filter, which modifies environmental inputs with relation to the history of the wings, alongside a non-linear transformation of the received signal at every sensor was crucial for the detection of rotations. These two input modifications, as well as the precise layout of sensors across the wing made it so only a few sensors were required for this detection. The group of researchers believe the principle of neural encoding and sparse placement of sensors hold promise for man-made system. they are now working to implement biologically inspired sensors into robotic platforms.

Bing Brunton previously received a MURI grant for a proposal including Steve Brunton, an Air Force Office of Scientific Research (AFOSR) Young Investigator award as well as a University of Washington Innovation award. Steve Brunton has received an Air Force Office of Scientific Research (AFOSR) Young Investigator award alongside two College of Engineering awards – one in 2018 and one in 2017.



Leave a Comment